absorption measurements, the concentration was adjusted so that \sim 50% of the light was absorbed. Lower concentrations were used for emission studies to avoid any problems of reabsorption.

Pyrex NMR tubes (5 mm) were used to hold the samples for the emission experiments. Rectangular $(2 \times 10 \text{ mm})$ Pyrex cells were used for the absorption measurements. All samples were immersed directly into liquid helium in a Pyrex double Dewar, with windows in the liquid-nitrogen jacket to avoid passing the light through boiling nitrogen

All absorption and emission spectra were obtained on a 1-m Jarrel-Ash spectrometer. Site selection spectra of azulene and chrysene were obtained using the 3511-Å line of the argon-ion laser. Absorption spectra were obtained with a quartz-halogen lamp. The excitation source for the broad-band emission spectra was a high-pressure mercury lamp in combination with broad-band filters. Site selection spectra were obtained with a tunable continuous-wave jet-flow dye laser pumped with an 8-W argon-ion laser. Rhodamine 110, pumped with all visible lines, could be tuned from \sim 530 to 595 nm. Coumarin 1, pumped with the UV lines, was tunable from 455 to 485 nm. Intracavity etalons were used to reduce the output bandwidth to less than 1 cm⁻¹.

The curves displayed in Figures 3-5 were generated and plotted on an IBM-1130 computer.

References and Notes

- (1) This paper is based primarily on the Ph.D. Thesis of William C. McColgin, University of Rochester, 1975. (2) (a) Eastman Kodak Co.; (b) JILA Visiting Fellow, 1977–1978; (c) Joint In-
- J. H. Eberly, W.C. McColgin, K. Kawaoka, and A. P. Marchetti, Nature
- (3) (London), **251,** 215 (1974).
- W. C. McColgin, Ph.D. Dissertation, Department of Physics and Astronomy, University of Rochester, 1975.
 R. I. Personov, E. I. Al'shitz, and L. A. Bykovskaya, *Zh. Eksp. Teor. Fiz.*,
- Pis'ma Red., 10, 609 (1972); Opt. Commun., 6, 169 (1972).
 R. I. Personov, E. I. Al'shitz, L. A. Bykovskaya, and B. M. Kharlamov, *Zh.*
- Eksp. Teor. Fiz., 65, 1825 (1973); Sov. Phys.-JETP (Engl. Transl.), 38, 912 (1974).
- (7) K. Cunningham, J. M. Morris, J. Funfschilling, and D. F. Williams, Chem. Phys. Lett., 32, 581 (1975).
- (8) I. I. Abram, R. A. Auerbach, R. R. Birge, B. E. Kohler, and J. M. Stevenson, J. Chem. Phys., 63, 2473 (1975).

- (9) E. I. Al'schitz, R. I. Personov, and B. M. Kharlamov, Chem. Phys. Lett., 40, 166 (1976), and references cited therein.
- (10) R. I. Personov and B. M. Kharlamov, Opt. Commun., 7, 417 (1973).
- (11) B. M. Kharlamov, R. I. Personov, and L. A. Bykovskaya, *Opt. Spectrosc.*, **39**, 137 (1976); *Opt. Commun.*, **12**, 191 (1974).
 (12) A. A. Gorokhovski and L. A. Bebane, *Opt. Commun.*, **20**, 144 (1977).
- (13) A. P. Marchetti, M. Scozzafava, and R. H. Young, Chem. Phys. Lett., 51,
- 424 (1977). (14) The apparent growth of the phonon-like sideband is not due to differences in the sites, but reflects the increasing difficulty of selecting only a single site when exciting on the high-energy side of a given absorption transitionwhere a greater percentage of the absorption results from the broad overlapping phonon sidebands. See ref 4 and 8.
- (15) E. V. Shpol'skii, Sov. Phys. Usp., 5, 522 (1962); 6, 411 (1963).
 (16) E. V. Shpol'skii, Pure Appl. Chem., 37, 183 (1974), and references cited
- therein.
- (17) G. J. Small, J. Chem. Phys., 52, 656 (1970).
- (18) K. K. Rebane, "Impurity Spectra of Solids", Plenum Press, New York, N.Y., 1970.
- A. Maradudin, "Solid State Physics", Supplement 3, 2nd ed, F. Seltz and D. Turnbull, Ed., Academic Press, New York, N.Y., 1971, Chapter 8.

- (20) A. Szabo, *Phys. Rev. Lett.*, 25, 925 (1970); 27, 323 (1971).
 (21) L. A. Riseberg, *Phys. Rev., Sect. A.* 7, 671 (1974).
 (22) D. B. Fitchen in "Physics of Color Centers", W. B. Fowler, Ed., Academic Press, New York, N.Y., 1968, Chapter 5.
 (23) B. Meyer, "Low Temperature Spectroscopy", American Elsevier, New York, New York,
- N.Y., 1971, Chapters 1 and 2. (24) R. M. Hochstrasser and P. N. Prasad in "Excited States", Vol. 1, E. C. Lim,
- Ed., Academic Press, New York, N.Y., 1974, pp 79-126. (25) One of the justifications for this broad-band synthesis lies in the fact that the same site model (starting with eq 1) successfully predicts the observed features and behavior of narrow site selection spectra as has been ex-
- perimentally verified using a tunable dye laser. See ref 4 and 8
- (26) Reference 18, pp 39–49.
 (27) I. Abram, R. A. Auerbach, R. R. Birge, B. E. Kohler, and J. M. Stevenson, *J. Chem. Phys.*, **61**, 3857 (1974).
- (28) A. P. Marchetti, W. C. McColgin, and J. H. Eberly, Phys. Rev. Lett., 35, 387 (1975).
- (29) The minimum bandwidth in organic solutions appears to be about 0.6 kcal or 250 cm⁻¹ fwhm
- (30) G. G. Guilbault, "Practical Fluorescence, Theory, Methods, and Tech-niques", Marcel Dekker, New York, N.Y., 1973, p 9.
- (31) Reference 22, p 309.
- (32) The large Stokes shift observed for R6G and resorufin presumes in our model larger values of Δ —on the order of 200 cm⁻¹ for resorufin and 300 cm⁻¹ for R6G.
- (33) G. Flatscher, K. Fritz, and J. Friedrich, Z. Naturforsch. A, 31, 1220 (1976).
- (34) Reference 18, pp 60-61.

Conformational Equilibria in Vitamin D. Synthesis and ¹H and ¹³C Dynamic Nuclear Magnetic Resonance Study of 4,4-Dimethylvitamin D_3 , 4,4-Dimethyl-1 α -hydroxyvitamin D₃, and 4,4-Dimethyl-1 α -hydroxyepivitamin D₃

Elisha Berman, Noga Friedman, Yehuda Mazur,* and Mordechai Sheves

Contribution from the Department of Organic Chemistry, the Weizmann Institute of Science, Rehovot, Israel. Received January 31, 1978

Abstract: The title compounds were synthesized and their dynamic properties investigated by variable temperature ¹H NMR. Each of these compounds gave separate signals, at low temperature, for ring A conformers. The temperature-dependent spectra allowed the determination of the activation parameters characteristic of ring A chair-chair interconversion. The free energies of activation (ΔG^{\pm}) for the chair inversion in 4,4-dimethylvitamin D₃ (4a), 4,4-dimethyl-1 α -hydroxyvitamin D₃ (5), and 4,4-dimethyl-1 α -hydroxyepivitamin D₃ (6) were found to be 10.1, 11.0, and 12.0 kcal/mol, respectively. The ¹³C NMR spectrum of 4a was recorded at room temperature and at low temperature (ca. -90 °C). The chemical shift separation of the two observed C₃ signals, at low temperature, was used for conformational analysis.

Introduction

Vitamin D is a steroid, whose actual shape considerably differs from other steroids. The difference lies in its cleaved ring B and its C_6 - C_7 single bond having an s-trans instead of an s-cis conformation. It appears that this extended structure of vitamin D has the lowest ground state free energy; however, this bond is free to rotate, enabling vitamin D to achieve the

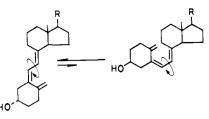
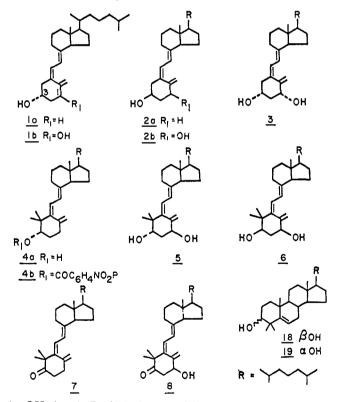



Figure 1. Conformational equilibria: rotation around C_6-C_7 single bond in vitamin D_3 (1a) and previtamin D_3 .

alternative s-cis conformation required for the vitamin $D \rightleftharpoons$ previtamin D thermal equilibrium (Figure 1).¹ This equilibrium is essential for the biogenetic formation of vitamin D in most organisms. The other conformational mobility taking place in vitamin D and its analogues is the widely discussed ring A chair-chair interconversion where two conformers of similar free energy, one with OH at C₃ in an axial and the other in an equatorial orientation, exist in a dynamic equilibrium (Figure 2).²⁻⁵

An analysis of the ring A conformational equilibrium was performed by ¹H NMR spectroscopy,^{2,3} using the values of the spin-spin coupling constants of the proton at C₃ (the ring A carbon bearing an OH substituent). Recently, we have also applied ¹³C NMR, using a method based on the chemical shift values of the C₃ carbon atom.⁵

It was established that at room temperature, the relative population of ring A conformations in the monools, vitamin D_3 (1a) and its C_3 epimer 2a, as well as in the 1,3-trans diol,

 1α -OH vitamin D₃ (1b), does not differ appreciably, the ratios of the conformers (OH-equatorial/OH-axial at C₃) being 57:43, 65:35, and 45:55, respectively.^{3.5} On the other hand, in nonpolar solvents, the two 1,3-cis diols, 1α -OH epivitamin D₃ (2b) and 1β -OH vitamin D₃ (3), assume mainly the conformation in which both OH groups are axially oriented, the ratio of the C₃ OH-equatorial to the OH-axial conformations being 20:80 and 10:90, respectively.^{3,6,7}

Ring A conformational mobility of vitamin D_3 (1a) and its 1 α -OH analogue 1b is of interest in connection with the biological activity of these compounds. It was proposed by Oka-

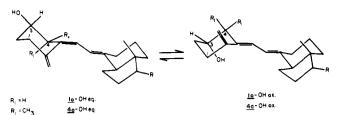
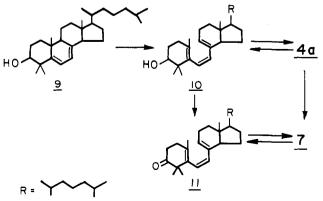


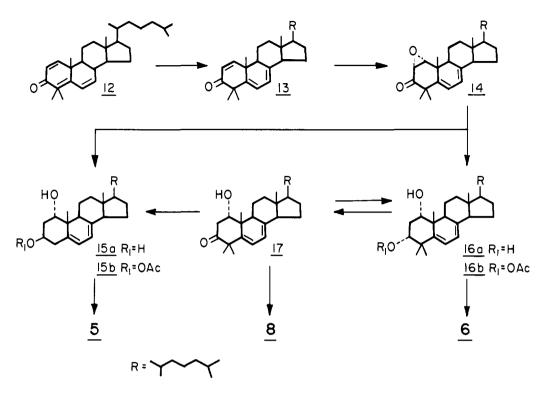
Figure 2. Conformational equilibria: ring A chair-chair interconversion in vitamin D_3 (1a) and 4,4-dimethylvitamin D_3 (4a).

mura and Norman^{3,8} that in the hormonally active 1α ,25dihydroxyvitamin D₃ (**1b**-25-OH), only the conformation having OH at C₁ in an equatorial orientation has the proper geometry for binding to the protein receptor, a step which is necessary to induce the biological events leading to the calcium transport and mobilization in the body.

Our investigations of the dynamic properties of ring A conformations in vitamin D_3 (1a) and its hydroxylated analogue using NMR techniques were hampered by their considerable ring A flexibility. We have been unable to detect any spectral changes either in vitamin D_3 (1a) or in 1 α -OH vitamin D_3 (1b) at low temperatures, down to ca. -100 °C. Therefore, we turned our attention to the 4,4-dimethylvitamin D_3 (4a), its *p*-nitrobenzoate ester (4b), and the respective diols, the 1 α -OH-4,4-dimethylvitamin D_3 (5) and its C₃ epimer 6. We have expected that the additional interactions introduced to the molecule due to the methyl groups at C₄ might increase, considerably, the energy barrier to the ring A inversion, enabling the NMR detection of the separate conformers.


These compounds were thus synthesized and their dynamic properties investigated by variable temperature NMR. In addition, for comparison, we have also prepared the two corresponding dimethyl keto analogues 7 and 8, and recorded their NMR spectra.

Results


1. Preparation of Compounds. a. 4,4-Dimethylvitamin D₃ (4a), the *p*-Nitrobenzoate Ester (4b), and the Dimethyl Ketone 7. The previously described dimethyl derivative 4a was prepared by a slight modification of the published procedure (Scheme I).⁹ 4,4-Dimethylcholesta-5,7-dien-3 β -ol (9) was irradiated at 0 °C with a 300-nm light and the previtamin 10 formed was isolated and identified. Heating 10 at 80 °C for 4 h resulted in an equilibrium mixture of previtamin 10 and vitamin 4a in a 1:9 ratio (as established by ¹H NMR of the heated mixture). The mass spectrum of 4a¹⁰ shows peaks due to fragmentation across the C₇-C₈ double bond, a unique characteristic of the vitamin D system. However, 4a absorbs in the UV at a slightly lower wavelength than the parent vitamin D₃ (1a), with decreased value (λ_{max} 261 nm, ϵ 12 000, vs. 264 nm, ϵ 18 000).

The 4,4-dimethylvitamin D_3 (4a) was converted by a stan-

Scheme I

Scheme II

dard procedure to its *p*-nitrobenzoate ester, **4b**. The ester was characterized by its mass spectral fragmentation with peaks due to a loss of *p*-nitrobenzoic acid and a cleavage across the C_7-C_8 double bond,¹⁰ and by its UV spectrum showing a broad band at 256 nm (ϵ 22 000).

Oxidation of 4a with a modified Moffat reagent¹¹ led to the keto analogue 7. This ketone was also formed by similar oxidation of the previtamin 10 followed by thermal isomerization of the resulting keto previtamin analogue 11. The presence of the triene system in 7 was indicated by its mass spectrum (cleavage across C_7-C_8 bond).¹⁰

The UV spectrum of 7 showed a number of bands (λ_{max} 320 s, 310 s, 290 s, 264, and 253 nm (ϵ 1200, 2700, 4000, 12 000, and 10 800)) due to the conjugated triene system and the homoconjugation of the carbonyl function with the double bonds.

b. 1 α -Hydroxy-4,4-dimethylvitamin D₃ (5), Its C₃ Epimer 6, and Their Keto Analogue 8. These three vitamin D₃ analogues were obtained by irradiation of the corresponding $\Delta^{5,7}$ -dienes 15a, 16a, and 17 formed in three steps from the known trienone 12 as outlined in Scheme II.¹²

The starting material 12^{13} was converted with NaOCH₃ and (CH₃)₂SO to its sodium tetraenolate, which gave with methyl iodide the 4,4-dimethyl trienone $13 (\lambda_{max} 275 \text{ nm}, \epsilon 6000)$. On epoxidation with methanolic solution of NaOH and H₂O₂ the epoxy ketone $14 (\lambda_{max} 293 \text{ s}, 282, 272, 261 \text{ s nm} (\epsilon 5500, 9300, 9300, 7000))$ was formed.

The epoxy ketone 14 was reduced with LiAlH₄ in boiling ether to a 1:4 mixture of $1\alpha,3\beta$ - and $1\alpha,3\alpha$ -diols 15a and 16a.¹⁴ The diol 15a (multiplet due to H at C₁ and C₃ which separated upon addition of a shift reagent into a narrow, $W_{1/2} = 7.5$ Hz, and a broader, $W_{1/2} = 17$ Hz, signal) reacted with acetic anhydride and pyridine at room temperature to give the 3-monoacetate 15b (H at C₁, a narrow multiplet, $W_{1/2} = 7$ Hz, and H at C₃, a triplet, J = 8 Hz). On the other hand, the diol 16a (H at C₁ and C₃, narrow multiplets, $W_{1/2} = 7.5$ Hz) was not acetylated under the above mild conditions, but gave the 3monoacetate 16b (H at C₁ and C₃, two narrow multiplets, $W_{1/2} = 7.5$ and 7.3 Hz, respectively) with acetic anhydride and N,N'-dimethylaminopyridine.

Selective oxidation of the 1α , 3α -diol **16a** with a modified

Moffat reagent¹¹ resulted in the ketol 17, which on treatment with LiAlH₄ was reduced to a 1:1 mixture of the two diols 15a and 16a.

Both diols 15a and 16a as well as the ketol 17 were converted to the respective vitamin D₃ analogues 5, 6, and 8 by irradiation in ether at 300 nm, followed by heating for 4 h at 80 °C. The two diols 5 and 6 absorb in the UV ($\lambda_{max} 257 \text{ nm}, \epsilon 11 000$) at a lower wavelength than their monohydroxylated analogue 4a. The UV spectrum of the ketol 8 was similar to that of the ketone 7. In the mass spectra, the three vitamin D₃ analogues showed characteristic peaks due to the fragmentation across the C₇-C₈ double bond.¹⁰

2. ¹H and ¹³C NMR Spectra. We have investigated the variable temperature ¹H NMR spectra of four 4,4-dimethyl derivatives: the monool 4a, its *p*-nitrobenzoate ester 4b, and the two 1,3-diols 5 and 6. We have observed the slow exchange limit spectra for each of the compounds, and determined the activation parameters for their ring A chair-chair interconversion. On the other hand, the two ketones 7 and 8 did not show any spectral changes in the temperature range between 25 and -100 °C.

The ¹³C NMR spectra of the dimethylvitamin **4a** and its ester **4b** were analyzed, and all their ¹³C signals were assigned. The low-temperature ¹³C spectrum of **4a** was also recorded, and the slow exchange limit for the C₃ resonance was observed at ca. -90 °C. The chemical shift difference between the two C₃ signals (due to the two ring A conformations) was compared with the chemical shift difference between the C₃ signals of 4,4'-dimethylcholesterol (**18**) and its C₃ epimer **19**. Since ring A of the two steroids has similar substitution patterns as ring A of **4a** (where **18** has an equatorially oriented OH group and **19** an axially oriented OH), they may be regarded as corresponding to its "frozen" conformers.

The population ratios of the 4,4-dimethyl derivatives were evaluated at room temperature from the coupling constants values of proton at C_{3} ,^{2,3} and at the slow exchange limit from the ratio of peak areas. These population ratios were ca. 50:50, remaining constant at low temperatures (within an experimental error of $\pm 10\%$).

a. ¹H NMR of 4,4-Dimethylvitamin D_3 (4a) and Its Ester 4b. The chemical shift data for the vinylic and carbinol protons

Table I. ¹H NMR Data for 4,4-Dimethylvitamin-D₃ and Derivatives at Room Temperature^a

compd		H at C ₁ , ppm	³ J _c , Hz	$\frac{^{3}J_{t}}{Hz}$	H at C ₃ , ppm	³ <i>J</i> _c , Hz	³ J _t , Hz	H _E at C ₁₉ , ppm	J, Hz	Hz at C ₁₉ , ppm	J Hz	H at C7, ppm	H at C ₆ , ppm	J _{AB} , Hz	$\begin{array}{c} \Delta \nu_{AB}, \\ \pm 1.2 \\ Hz \end{array}$
4a 4b ^b 5	301 299 287	3.567	3.8*	5.8*	3.584 4.939 4.207	3.7 3.8 4.2	7.3 7.2 8.0	4.622 4.752 4.789	2.7 2.7 1.2, 1.6	5.013 5.127 5.267	1.4 1.4 2.3, 1.6	5.92 6.01 5.90	6.14 6.25 6.26	11.0 11.0 10.6	62 64.5 96
6	299	3.351	4.5*	4.5*	4.147	4.5*	4.5*	4.793	2.4	5.222	2.5	5.89	6.30	11.1	111

^{*a*} All spectra were recorded on a Bruker WH-270, in CS₂ solution containing CD₂Cl₂ as a lock; chemical shifts are given in parts per million downfield from Me₄Si and are accurate to within ± 0.0025 ppm; coupling constants are accurate to within 0.2 Hz; an asterisk indicates coupling constants values obtained by a computer Lorentzian curve fitting. ^{*b*} In addition the *p*-nitrobenzoate group shows an A₂B₂ spin system with $\delta_A 8.13$ and $\delta_B 8.21$ ppm, $J_{AB} = 8.8 \pm 0.2$ Hz, and $\nu_{AB} = 21.5 \pm 1.2$ Hz.

Table II. ¹H NMR Data for 4,4-Dimethylvitamin D₃ and Derivatives at the Slow Exchange Limits^a

compd	temp, ±2 K	orientation of OH at C ₃	H at C1	H at C ₃	H _E at C ₁₉	Hz at C19	H at C7	H at C ₆	J _{АВ} , ±0.3 Hz	$\nu_{AB}, \pm 2 \text{ Hz}$
4 a	181	ax		3.40	4.58	4:99	5.90	6.03	11.3*	36*
		eq		3.21	4.54	4.96	5.77	6.08	10.7*	83*
4b	183	ax		4.99	4.75	5.14	6.00	6.17	11.0*	46*
		eq		4.81 ^b	4.69	5.11	5.87	6.25	10.9*	101*
5	208	ax	3.37	4.20	с	С	с	с	с	С
		eq	3.58	4.10	С	с	с	С	с	С
6	226.5	ax		3.88	с	5.20	с	с	с	С
		eq		4.18		5.16	с	С	С	с

^a See footnote a, Table I; chemical shift values are accurate to within ± 0.01 ppm. ^b ${}^{3}J_{eq:eq} = 4.3* \pm 0.4$ Hz. ${}^{3}J_{ax:ax} = 11.4* \pm 0.4$ Hz. ^c These signals were not observed under the slow exchange limit condition.

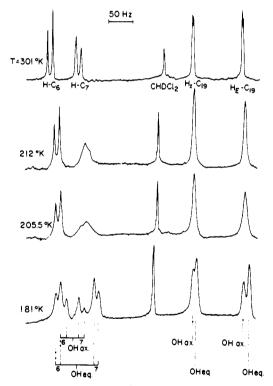


Figure 3. The downfield portion of the 270-MHz spectra of 4a at several temperatures. The relative shift displacements are due to temperature/ solvent shift.

in **4a** and **4b** at room temperature and low temperature are collected in Tables I and II, respectively.

The room temperature spectrum of 4a shows five downfield multiplets due to H at C_3 (d of d), H_E at C_{19} (d), H_z at C_{19} (d of t), H at C_7 (d), and C_6 (d). All hydrogen multiplets may be considered as a first-order spin system, except for the last two hydrogens, which are part of an AB spin system. The chemical

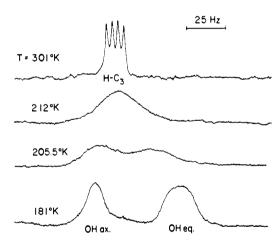


Figure 4. The part of the 270-MHz spectra of 4a at several temperatures showing the carbinol proton at C_3 .

shift differences between the above hydrogens and the neighboring hydrogen atoms, to which they are coupled, satisfy the condition $\delta_A - \delta_B > 3J_{AB}$. As a result, the analysis of these hydrogen multiplets is not complicated by virtual couplings. Thus, the temperature-dependent behavior (Figures 3 and 4), as well as the position of coalescence, can be determined accurately. In the case of the *p*-nitrobenzoate ester, **4b**, we have also monitored the temperature-dependent behavior of the benzoate group's aromatic protons. The true description of the aromatic multiplets at room temperature is an AA'BB' spin system, but as first approximation it can be considered as A₂B₂ spin system with $J_{AB} = 8.8$ Hz and $\Delta v_{AB} = 21.5$ Hz.

In order to evaluate the activation parameters for the chair-chair interconversion in these compounds, we have used the approximate relation at the coalescence temperature, $k_c = \pi \Delta \nu / \sqrt{2}$, together with the Eyring equation. Upon substitution, rearrangement, and evaluation of the constants involved, the following approximate equation for the free energy

Table III. Thermodynamic Data and Parameters for 4,4-Dimethylvitamin D_3 (4a) and Its *p*-Nitrobenzoate Ester (4b)

	signal obsd for	<i>T</i> _c ,		$^{h}\Delta G_{c}^{\ddagger}$ at T_{c}, b^{h}	$\Delta G^{\pm,c}$	$E_{a},$	$\Delta H^{\pm},$	
compd	protons at	±2 K	s ⁻¹	kcal/mol	kcal/mol	kcal/mol	kcal/mol	$\Delta S^{\pm d}$
	C ₃	208	120	10.06				
	C3 C7	204	73	10.06	10.07 ± 0.2	11.14 ± 0.8	10.74 ± 0.8	3.4 ± 3
4 a	C ₆	197	31	10.03				
	$C_{19(E)}$	197	27	10.09	(10.08 ± 0.04)			
	$C_{19(Z)}$	195	18	10.14				
	C3 C7	207	104	10.06				
	C ₇	204	73	10.04				
	meta ^e	202	47	10.13	10.09 ± 0.2	10.97 ± 0.7	10.57 ± 0.7	2.37 ± 3
4b	C ₆	202	46	10.13				
	$C_{19(E)}$	200	38	10.11	(10.10 ± 0.03)			
	orthoe	198	29	10.11				
	C _{19 (Z)}	195	20	10.10				

^a The k_c 's were calculated from the equation $k = 2^{-1/2} \pi \Delta \nu$. ^b The ΔG_c^{\pm} 's were obtained by use of the equation $\Delta G_c^{\pm} = T_c(45.67 + 4.58 \log (T_c/\Delta \nu))$. ^c The ΔG_c^{\pm} 's were obtained from a plot of $\ln k_c vs. 1/T_c$ for all protons involved using the equation $k_c = A \exp(-E_a/RT_c)$; values in parentheses indicate the average ΔG_c^{\pm} calculated from the previous column together with the standard deviation. ^d The ΔS^{\pm} 's were obtained from the equation $\Delta S^{\pm} = R(\ln(hA/kk_BT) - 1)$. ^e The meta and ortho positions in the *p*-nitrobenzyloxy function.

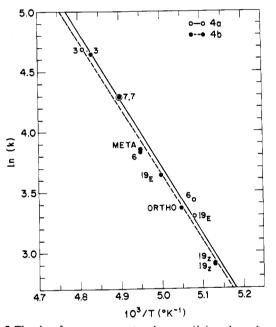


Figure 5. The plot of rate constants at coalescence (k_c) vs. the coalescence temperatures (1/T) for the various protons of (a) 4,4-dimethylvitamin D₃ (4a) (open circles) and (b) its *p*-nitrobenzoate ester (4b) (full circles).

of activation (ΔG_c^{\ddagger}) at coalescence is obtained:

$$\Delta G_{\rm c}^{\,\pm} = T_{\rm c}(45.67 \pm 4.58 \log T_{\rm c}/\Delta\nu) \tag{1}$$

where T_c is the coalescence temperature and $\Delta \nu$ is the chemical shift difference between the two sites at the slow exchange limit in hertz. Equation 1 will be valid provided that the population difference is not too large. It was shown by Kost and Raban¹⁵ that when the chemical shift difference between the two signals is greater than ca. 5–10 Hz, the use of the above approximate relation for k_c is well justified.

We have also utilized the Arrhenius relation:¹⁶

$$\ln k = -\frac{E_a}{R} \left(\frac{1}{T}\right) + \ln A \tag{2}$$

where k is the rate constant; R is the gas constant in calories; E_a is the energy of activation; T is the temperature in K; and the usual intercept of ln A. The practice is to get a plot of ln k vs. 1/T for each proton at various temperatures, covering both the fast and slow exchange limits, but the most sensitive and

Table IV. Thermodynamic Data and Parameters for 1α -Hydroxy-4,4-dimethylvitamin D₃ (5) and 1α -Hydroxy-4,4dimethylepivitamin D₃ (6)^{*a*}

compd	signal obsd for protons at	<i>Т</i> с, ±2 К	k_{c} at T_{c} , s^{-1}	ΔG_{c}^{\ddagger} at T_{c} , kcal/mol	ΔG_{c}^{av}
5	$\begin{array}{c} C_1 \\ C_2 \end{array}$	226 220	127 60	10.94 10.96	10.95 ± 0.2
6	C ₃ C _{19 (Z)}	246 237	160 31	11.84 12.16	12.00 ± 0.2

^a See footnotes to Table III.

thus the most accurate range of temperatures is the intermediate range just above and below the coalescence temperature. The plot is usually accomplished by computer-simulated spectra and visual comparison with the experimental spectra.¹⁶ We have found that rather than obtaining a single plot for each hydrogen multiplet, we could obtain the same information by plotting the rate constants vs. the coalescence temperatures of all the hydrogen multiplets involved. This procedure is justified if only one process is involved, such as in this case the chair-chair interconversion. Under such a condition the individual proton plots must coincide (Figure 5). Since the coalescence temperatures for all multiplets cover the intermediate range of exchange (e.g., $k_c = 120-18 \text{ s}^{-1}$), the sensitivity of this plot is comparable with that of the classical plot obtainable with the aid of computer-simulated spectra. The disadvantage of employing this procedure arises from the accuracy in determining the position of the coalescence temperatures. However, the error in determining the coalescence temperatures is not greater than ± 2 K, which is, in fact, comparable with the error involved in measuring the true temperature of the sample using a chemical thermometer (CH_3OH) . In order to reduce the errors involved in calculating the rate constants, we have used a simple computer Lorenzian curve fitting for those cases where the multiplets at the slow exchange limit have not been fully separated.

In Table III we have collected all activation and thermodynamic parameters as evaluated by both methods.

Since the ΔG_c^{\ddagger} values obtained at T_c for the different protons in **4a** and **4b** are nonuniformly spread, and the ΔS_c^{\ddagger} values are small and within the experimental error, we may conclude that the ΔG_c^{\ddagger} values are temperature independent. This conclusion is supported by the excellent agreement between the

Table V. ¹³C Chemical Shift Data for Vitamin D₃ (1a), 4,4-Dimethylvitamin D₃ (18), 4,4-Dimethylcholesterol (19), and 4,4-Dimethylepicholesterol (19)^{*a*}

Carbon	<u>1a</u>	4a $(\Delta \delta)^c$	18 (Δδ) ^c	19
1	31.95	$30.35^{b}(-0.25)$	36.75 (-0.35)	31.90
2	35.25	$32.00^{b}(-2.60)$	27.50 (-3.65)	25.25
3	69.25	77.05 (3.55)	77.60 (2.0)	76.60
4	46.00	43.15 (-1.05)	41.65 (-0.25)	40.65
5	135.15 ^d	$144.75^{b,e}(-0.9)$	149.95 (-0.85)	147.40
6	122.50	$118.75^{b,e}(-0.3)$	120.25 (0.5)	121.90
7	117.65	$118.25^{b}(-0.1)$	32.65	32.60
8	142.30	142.10 (0.55)	30.95	30.20
9	29.05	29.10	51.05 (-0.15)	50.90
10	145.20 ^d	$144.50^{e} (-)^{f}$	36.80 (-0.05)	36.50
11	22.30	22.35	20.65	20.50
12	40.60	40.55	39.85	39.80
13	45.90	45.85	42.30	42.15
14	56.40	56.45	57.35	57.30
15	23.60	23.50	24.25	24.20
16	27.65	27.60	28.30	28.30
17	56.75	56.60	56.20	56.10
18	12.05	12.00	11.90	11.90
19	112.40	113.60 (0.75)	21.35 (0.0)	21.85
20	36.15	36.00	35.85	35.80
4α		25.40^{b} (-0.1)	27.25 (-0.05)	21.15
4β		$22.10^{b}(0.6)$	23.65 (1.35)	28.05

^a Shifts are given relative to Me₄Si and are accurate to within ±0.05 ppm. The side chain resonances not listed in the table are C₂₁, 18.85; C₂₂, 36.20; C₂₃, 23.90; C₂₄, 39.55; C₂₅, 28.05; C₂₆, 22.60; C₂₇, 22.85. ^b These signals were selectively broadened at -30 °C. ^c Values in parentheses are $\Delta \delta = \delta$ (ester) $-\delta$ (OH); any $\Delta \delta < 0.1$ ppm was neglected for all carbons other than ring A carbon atoms. ^d Original assignments have been reversed (ref 17). ^e Assignment down any column may be reversed. ^f This signal was not observed.

 ΔG_c^{\ddagger} values (Table III) obtained with the aid of the approximate method (eq 1) and that obtained from the Arrhenius plot (eq 2).

It must be noted that unless ΔG° is zero, the ΔG_c^{\ddagger} values obtained by eq 1 represent the energy barrier for the less stable conformation of the two. Thus, if the equilibrium population ratio is near unity, which is practically true for **4a** and **4b**, and ΔG_c^{\ddagger} is a temperature-independent parameter, one would expect to obtain the same ΔG_c^{\ddagger} value using both methods.

The agreement in ΔG_c^{\ddagger} , as obtained by both methods (Table III), justifies the use of the approximate method for this family of compounds.

b. ¹H NMR of 1α -Hydroxy-4,4-dimethylvitamin D₃ (5) and Its Epimer 6. In these two compounds, we have observed the slow exchange limit for only two hydrogen multiplets: H at C₁ and C₃ in 5, H at C₃ and H₂ at C₁₉ in 6. Owing to the low solubility of these compounds we could not, however, obtain sufficiently low temperatures to observe the slow exchange limit for the other hydrogen multiplets. As a result, the thermodynamic data were obtained by the use of the approximate relation (eq 1) alone.

The chemical shift data at room and low temperatures are collected in Tables I and II, respectively, and the calculated activation parameters are shown in Table IV.

c. ¹³C NMR of 4,4-Dimethylvitamin D₃ (4a), 4,4-Dimethylcholesterol (18), and Its C₃ Epimer 19. The ¹³C chemical shift data and the assignment for 4,4-dimethylvitamin D₃ (4a), the *p*-nitrobenzoate ester 4b, and the two model compounds 4,4'-dimethylcholesterol (18) and its C₃ epimer 19, as well as the revised assignment for vitamin D₃ (1a),¹⁷ are listed in Table V.

Most of these assignments were done using single frequency off-resonance decoupling (SFORD), partially relaxed spectra (PRS), and comparison with analyzed spectra of compounds having related structures. The distinction between the signals due to the two methyl groups at C₄ in dimethylcholesterol (18) was based on the comparison with the ¹³C spectrum of its nitrobenzoate ester. The signal which shifted on esterification was assigned to the α -methyl at C₄.¹⁸ In the dimethylepicholesterol 19, the methyl signal at C₄ with the shorter T_1 value (in the partially relaxed spectrum) was assigned to the α -methyl by virtue of its gauche interaction with OH at C₃.¹⁹

The above analysis for 4a did not allow unequivocal distinction between the pairs of signals due to C_5-C_{10} , C_6-C_7 , and C_1 - C_2 . The assignment of these signals was based on their different temperature-dependent behavior, since at the slow exchange limit they are expected to have a different chemical shift difference $(\Delta \nu)$, and thus will have a distinctly different coalescence temperature. On lowering the temperature one of the signals in each pair broadened more than the other, and the broadened signals were assigned to C_5 , C_6 , and C_1 . These assignments are based on the larger shift effect experienced by these carbon atoms in their respective conformers.²⁰ Thus, C_5 will experience a larger chemical shift effect $(\Delta \nu)$ than C₁₀ owing to the OH at C_3 , and C_6 a larger effect than C_7 owing to the methyls at C₄. In the case of C_1 and C_2 one of the signals (at 30.35 ppm) was broadened at a slightly higher temperature (-25 vs. -30 °C), which may be due to the γ interaction of the former with the OH at C_3 .

We have recorded the low-temperature ¹³C spectra of **4a** and have observed at -90 °C separate C₃ signals for each of the two conformers, the chemical shift difference between them being 1.0 ± 0.2 ppm.

Discussion

The slight differences in magnitude for the ΔG_c^{\ddagger} values obtained at different coalescence temperatures, and their random distribution (as calculated from the modified Eyring's relation, eq 1), as well as the comparatively small ΔS^{\ddagger} values (obtained from Arrhenius plot, eq 2), show that in the ring inversion the free energy of activation, ΔG_c^{\ddagger} , is temperature independent.

The similar population ratio of the OH-equatorial to the OH-axial conformers in both 4,4'-dimethylvitamin D_3 (4a) and its ester 4b indicates similar ground-state free-energy differences (ΔG°) between the two conformers in both compounds. The same relationship between the respective conformers of the free alcohols and their *p*-nitrobenzoate esters

Table VI. The Dimethyl Substituent Chemical Shift Effects for Vitamin D_3 (1a) Cholesterol and Epicholesterol^{*a*}

$\Delta\delta$ carbon	δ (4a) – δ (1a)	δ (18) – δ (cholesterol)	δ (19) – δ (epicholesterol)
1	-1.6	-0.6	-1.4
2	-3.25	-4.2	-3.7
3	7.8	5.85	9.45
4	-2.8	-0.7	0.7
5	9.6	9.1	8.8
6	-3.4	-1.4	-2.15
7	0.6	0.7	0.55
8	-0.2	-1.0	-1.75
9		0.8	0.45
10	-0.7	0.25	-0.9
11		-0.5	-0.35
12			
13			-0.25
14		0.5	0.45
19	1.2	1.95	3.15

^{*a*} The resonances due to carbons 15-18 and 20-27 were not affected upon the dimethyl substitution.

was previously observed in vitamin D_3 (1a) and some of its analogues.⁵ In addition, the data in Table III indicate that the free energies of activation for 4a and 4b are the same.

Thus, the contribution of the ester group to the nonbonded interactions both in ground and excited states is very small indeed.

Our failure to observe any spectral changes for vitamin D₃ (1a), even below $-100 \,^{\circ}$ C, indicates that the energy barrier for this compound is likely to be lower than that of 4,4-dimethylvitamin D₃ (4a) (< 8.5 kcal/mol).²¹ It is very unlikely that this failure to observe the slow exchange limit for 1a arises from the intrinsic small chemical shift differences (Δv) for respective protons in the two conformers, since the magnetic environment of most ring A protons is expected to be almost the same in both 1a and 4a. The comparatively low energy barrier (ΔG^{\ddagger}) for ring A inversion in **1a** is not surprising as its ring A sp² carbon atoms are supposed to lower this barrier considerably with respect to a normal cyclohexane ring.¹⁷ Although the ΔG^{\ddagger} for the parent 1,2-dimethylenecyclohexane was not yet established, the ΔG^{\ddagger} values for methylenecyclohexane and its 2,2-dimethyl derivatives are lower than those for the respective saturated cyclohexane derivatives (ca. 8.5 vs. 10.0 kcal/mol).²²

The observed increase in the energy barrier, when the two methyl groups are introduced into ring A of vitamin D_3 (1a), is probably due to an unfavorable interaction between these methyls and the H and C_6 . The existence of such interaction in the ground state of 4a is evident from the large mutual γ deshielding effect on C₄ and C₆ upon the dimethyl substitution at C₄.^{23,24} Thus, the ¹³C chemical shift differences for C₄ and C_6 between 4a and 1a are -2.8 and -3.4 ppm, respectively. The shift differences between the analogous C atoms in 4,4dimethylcholesterol (18) and cholesterol are -0.7 and -1.4ppm, and those between 4,4-dimethylepicholesterol (19) and epicholesterol are 0.7 and -2.15 ppm (Table VI). This interaction between the methyls at C_4 and H at C_6 produces a strain on the C_5 - C_6 double bond, as evident from the UV spectrum of 18 and 19 which show both a blue shift of 5 nm and a considerable decrease in the ϵ value compared with vitamin D₃ (1a)

Other interactions between these methyl groups and the ring A substituents are not expected to have a substantial effect on the energy profile of the ring A inversion. It has been shown by Bernard et al.²² that the introduction of methyl groups, in vicinal position to an exo methylene group, does not substantially change the barrier to inversion in methylenecyclohexane.

The comparison of the 13 C NMR spectra of **4a** with those of **18** and its epimer **19** on one hand, and vitamin D₃ (**1a**) on the other hand, suggests that the rest of ring A interactions in **4a** are about the same as in the parent molecule **1a** (Table V). Thus the dimethyl substitution chemical shift (SCS) at C₃ in **4a** was midway between the corresponding dimethyl SCS in **18** and **19** (Table VI).

In the ¹H NMR spectrum of **4a** there are indications that the dihedral angles in ring A protons are the same for both 4a and **1a**. The vicinal spin-spin coupling constants of the proton at C₃ in 4a, at room temperature, are similar to those of 1a $({}^{3}J_{\text{trans}} = 7.3, {}^{3}J_{\text{cis}} = 3.7 \text{ Hz vs. } {}^{3}J_{\text{trans}} = 7.6, {}^{3}J_{\text{cis}} = 3.8 \text{ Hz},$ respectively). The trans coupling constants may be regarded as representing a weighted average value of the two limiting trans coupling constants ${}^{3}J_{ax:ax} = 11.1$ and ${}^{3}J_{eq:eq} = 2.7$ Hz, derived from cyclohexanol.²⁵ Similarly, the cis coupling constants of 4a and 1a may be regarded as the average values of ${}^{3}J_{\text{eq:ax}}$ and ${}^{3}J_{\text{ax:eq}}$. We have, in addition, obtained from the slow exchange limit spectra of 4a the true trans coupling constants for the OH-equatorial conformer $({}^{3}J_{ax:ax} = 11.4 \text{ and } {}^{3}J_{eq:eq})$ = 4.3 ± 0.4 Hz).²⁶ This result indicates that ring A in 4,4dimethylvitamin D_3 (4a), and thus also in vitamin 1a and its analogues, exists in two genuine chair conformations as in the case of cyclohexanol.30

Comparison of the activation parameters of **4a** with those of its two hydroxylated analogues **5** and **6** shows that the introduction of OH group at C₁ in a 1,3-trans relation increases the barrier by ca. 1 kcal/mol, while the introduction of OH group in a 1,3-cis relation by 2 kcal/mol. The first increase may be ascribed to the substituent effect of the additional OH group, while the second increase arises from the energy necessary to break the 1,3-hydrogen bonding during the chair inversion.⁶

It is to be noted that similar population ratios of the two conformers (C₃-OH eq vs. C₃-OH ax) were observed for both vitamin D₃ (1a) and its dimethyl analogue 4a (57:43 and 55: 45), as well as those of the respective cis 1,3-diols 2b and 6 (20:80 and 21:79). However, the population ratios of the trans 1,3-diols 1b and 5 differ slightly, favoring in the former the C₃-OH axial conformer, and in the latter, the C₃-OH equatorial conformer (44:64 and 67:37, respectively).

Addition of another sp² ring carbon atom lowers the barrier to the ring inversion of the dimethylvitamin D₃ derivatives, as evident by the lack of temperature dependence of the ¹H NMR spectra of 7 and 8, the two keto analogues of vitamin D₃. These two ketones (as their 4,4-dimethylhydroxyl analogues 4a, 5, and 6) exist in solution in the chair conformation as may be recognized from their UV spectra which show enhanced $n-\pi^*$ transitions and new $\pi-\pi^*$ transitions, due to coupling between the nonconjugated carbonyl and double bond chromophores.²⁷

Recently, we have proposed a method for the conformational analysis of vitamin D₃ and its analogues in the fast exchange limit region using ¹³C NMR spectroscopy.⁵ The method is based on the assumption that the C₃ chemical shift difference, Δ , between the two ring A chair conformations is equal to the C₃ chemical shift difference observed between cholesterol and epicholesterol ($\Delta = 4.62$ ppm). This assumption is verified in the case of 4,4-dimethylvitamin D₃ (4a).

The C₃ chemical shift difference between the respective conformers of **4a** at the slow exchange limit, $\Delta = 1.0$ ppm, was found to be identical with that between the C₃ chemical shifts of 4,4-dimethylcholesterol (**18**) and its C₃ epimer **19**. The smaller Δ value for the dimethyl derivatives, as compared to the nonmethylated compounds (1.0 vs. 4.62 ppm), reflects the dimethyl substituent chemical shift (SCS) effect on C₃.

The derivation of Δ values, from model systems, for conformational analysis under fast equilibrium conditions (e.g., 18 and 19 for 4a) is justified because the origin of the Δ value arises from neighboring atoms in the immediate vicinity of the carbon atom under consideration and can be related to the slightly different steric interactions imposed on the C atom in the two conformations.²⁰ It seems that a reliable estimate of the Δ value can be obtained if the carbon atom under consideration has the same relations to its neighboring atoms as far as two bonds away (γ effect), in both the compound under investigation and the model compounds, as evident from the dimethyl SCS values for 4a vs. 18 and 19 (Table VI).²⁸ The only carbon atom conforming with these relations in 4a, 18, and 19 is C₃. Since the population ratio of the SCS effect on C₃ in this compound is, as expected, midway between that on the respective carbon atoms in 18 and 19.

Experimental Section

¹H NMR spectra were recorded on a Bruker WH-270 spectrometer. Flip angles of ca. 90° were employed with 16K transform which gave ca. 0.1 Hz per data point for a 1900-Hz sweep width. Peak positions were determined by a software control and are considered to be accurate to within 6×10^{-4} ppm. The samples studied were dissolved in CCl_3F (5% w/w) containing CD_2Cl_2 to provide the lock. Me₄Si was used as an internal reference. Temperatures were monitored by means of a Bruker temperature control unit, Model B-ST 100/700, and determined from the peaks separation of a calibrated methanol sample, and are considered accurate to ± 2 °C. The ¹³C NMR spectra were recorded on a Bruker WH-90 spectrometer, operating at 22.63 MHz. Samples were dissolved in CDCl₃ (ca. 0.05-0.2 M) containing some Me₄Si as an internal reference. Flip angles of ca. 60-70° were employed with 8K transform which gave ca. 0.5 Hz per data point for a 4000-Hz sweep width. Peak positions were determined by a software control and are considered accurate to within 0.05 ppm.

The low-temperature ¹³C spectra of 4,4-dimethylvitamin D₃ (4a) were recorded on a Bruker WH-270 spectrometer operating at 67.89 MHz. Flip angles of ca. 45° were employed with 16K transform which gave ca. 1.5 Hz per data point for a 12 000-Hz sweep width. A solution of ca. 0.05 M 4a in a 4:1 mixture of CCl₃F/CD₂Cl₂ containing Me₄Si as an internal reference was placed in a 10-mm NMR tube. Temperatures were monitored by means of a Bruker temperature control unit, Model B-ST 100/700, and determined from the peak separation of a calibrated MeI/Me₄Si (1:3) sample.²⁹

The ultraviolet spectra were taken on a Cary 118 spectrophotometer. Mass spectra were recorded on a Varian MAT 731 high-resolution mass spectrometer.

4.4-Dimethylprevitamin D₃ (10). A solution of 500 mg of 4,4-dimethylcholesta-5,7-dien-3-ol (9)^{9b} in 500 mL of ether was irradiated for 30 min with 300-nm light under nitrogen at 0 °C, the solvent was evaporated to dryness, and the residue was chromatographed on a silica gel dry column using hexane-ether (7:3) as an eluent resulting in 160 mg of previtamin 10: λ_{max} (ether) 257 mm (ϵ 8000); on addition of I₂, λ_{max} 256 nm (ϵ 12 300); δ (CCl₄) 0.72 (s, 3, CH₃ + C₁₃), 1.67 (s, 3, CH₃ at C₁₀) 3.85 (quintet, J = 9.4 Hz, H-C₃), 6.13 (m, 3, H-C₆, -C₇, and -C₉).

Anal. (C₂₉H₄₈O). Found: *m/e* 412.3608.

4,4-Dimethylvitamin D₃ (4a). A solution of 100 mg of previtamin 10 in 50 mL of isooctane was heated for 4 h at 80 °C. The solvent was then evaporated and the residue was chromatographed on a silica gel column using 7:3 hexane-ether as an eluent to give 80 mg of 4a: λ_{max} 261 nm (ϵ 12 000); NMR, Table I.

Anal. (C₂₉H₄₈O). Found: *m/e* 412.3602.

4,4-Dimethylvitamin D3 *p*-Nitrobenzoate (4b). A solution of 50 mg of 4a in 3 mL of pyridine was treated with 50 mg of *p*-nitrobenzoyl chloride and stirred overnight at room temperature. Pyridine was evaporated to dryness and the residue was chromatographed on a silica gel column. Elution with hexane-ether (8:2) gave 45 mg of the *p*-nitrobenzoate, 4b: mp 167-169 °C; λ_{max} (ether) 256 nm (ϵ 22 000); NMR, Table I.

4,4-Dimethyl Ketone 7. A solution of 100 mg of **4a** in 3 mL of dimethyl sulfoxide was treated consecutively with 50 mg of diethylcarbodiimide, 1 mL of pyridine, and 0.5 mL of trifluoroacetic acid and then stirred for 8 h at room temperature. The material was eluted with ether and chromatographed on a dry silica gel column. Elution with hexane-ether (8:2) gave 80 mg of the ketone 7: λ_{max} , see text; δ (CCl₄) 0.55 (s, 3, CH₃-C₁₃), 4.93, 5.21 (m, 2, H-C₁₉), and 5.95, 6.25 (AB_q, J = 11 Hz, 2, H-C₆ and H-C₇).

Anal. (C₂₉H₄₆O). Found: m/e 410.3448.

4,4-Dimethylcholesta-1,5,7-trien-3-one (13). A solution of 1 g of cholesta-1,5,7-trien-3-one (**12**) in 50 mL of dry benzene was added to a solution of 2 g of sodium methoxide in 100 mL of dimethyl sulfoxide at room temperature, under nitrogen. The solution was stirred for 10 min, then 10 g of methyl iodide was added and the stirring was continued for an additional 1 h. The product was extracted with 500 mL of ether. The ether extract was washed with brine, dried, and evaporated to dryness to give 0.7 g of **13**: mp 64-65 °C (methanol); $(\alpha)_D - 46^\circ$ (dioxane); λ_{max} (ether) 275 nm (ϵ 6000); δ (CDCl₃) 0.75 (s, 3, CH₃-C₁₃), 5.8 and 5.7 (ABq, J = 5.5 Hz, H-C₆ and H-C₇).

1α,2α-Epoxy-4,4-dimethylcholesta-5,7-dien-3-one (14). A solution of 5% potassium hydroxide in 10 mL of methanol and 5 mL of 50% hydrogen peroxide were added to a solution of 1 g of 4,4-dimethylcholesta-1,5,7-trien-3-one (13). The reaction mixture was stirred overnight at room temperature under nitrogen and the product was filtered off, washed with water, and dried under vacuum. Crystallization from ether-hexane gave 0.8 g of 14: mp 155–156 °C (hexane); (α)_D + 24° (dioxane); λ_{max} (ether), 293 s, 282, 272, 261 s nm (ϵ 5400, 9300, 9300, 7000); δ (CCl₄) 0.55 (s, CH₃-C₁₃), 3.4 and 3.5 (AB_q, J = 2 Hz, 2, H-C₁ and H-C₂), 5.4 and 5.8 (AB_q, J = 6 Hz, H-C₆ and H-C₇).

4.4-Dimethylcholesta-5,7-diene- 1α , 3β -diol (15a) and 4,4-Dimethylcholesta-5,7-diene- 1α , 3α -diol (16a). A solution of 500 mg of 1α , 2α -epoxy-4,4-dimethylcholesta-5,7-dien-3-one (14) in 50 mL of ether was added dropwise to a stirred mixture of 0.5 g of lithium aluminum hydride in 20 mL of dry ether. The reaction mixture was refluxed for 3 h and then was treated dropwise with a saturated solution of sodium sulfate. Solid sodium sulfate was added and then the mixture was filtered. The crude product isolated from ether was separated into two fractions by thin layer chromatography, on plates coated with silica gel developed with ether. One fraction gave 80 mg of 4,4-dimethylcholesta-5,7-diene- 1α , 3β -diol (15a): mp 159-160 °C (acetone); (α)_D -111° (dioxane, c 0.7); λ_{max} (ether) 293 s, 282, 272, 261 s nm (ϵ 7000, 12 000, 12 000, 8700); δ (CCl₄) 0.5 (s, 3, CH₃-C₁₃), 3.75 (m, 2, H-C₂), and 5.35, 5.90 (AB_q, J = 5.5 Hz, H-C₆ and H-C₇).

The other fraction contained 320 mg of 4,4-dimethylcholesta-5,7-diene-1 α ,3 α -diol (**16a**): mp 180-182 °C (hexane); (α)_D -105° (dioxane); λ_{max} (ether) 292 s, 282, 272, 261 s nm (ϵ 6000, 11 000, 11 000, 8200); δ (CCl₄) 0.52 (s, 3, CH₃-C₁₃), 3.55 (m, 2, H-C₁ and H-C₃), 5.78, 5.83 (AB_q, J = 10 Hz, H-C₆ and H-C₇).

4,4-Dimethylcholesta-5,7-diene- 1α , 3β -diol 3-Acetate (15b). A solution of 100 mg of 15a was dissolved in 1 mL of pyridine and treated with 0.5 M acetic anhydride. Isolation from ether and purification on a thin layer plate coated with silica gel developed with ether hexane (1:1) yielded 75 mg of 15b: mp 182–183 °C (acetone); λ_{max} (ether) 293 s, 282, 272, and 261 s nm (ϵ 4600, 9300, 9300, 7000); δ (CCl₄) 0.52 (s, 3, CH₃-C₁₃), 2.0 (s, 3, H-OAc), 3.7 (m, 1, H-C₁), 5.04 (t, J = 8 Hz, 1, H-C₃), 5.80, 8.30 (AB_q, J = 11 Hz, H-C₆ and H-C₇).

4,4-Dimethylcholesta-5,7-diene- 1α , 3α -**diol 3-Acetate (16b).** A solution of 75 mg of **16a** in 10 mL of methylene chloride was treated with 220 mg of dimethylaminopyridine and 0.3 mL of acetic anhydride overnight at room temperature. The product was isolated from ether and purified on a preparative thin layer silica gel plate developed with hexane-ether (1:1) to give 54 mg of **16b**: mp 136-138 °C (hexane); λ_{max} (ether) 293 s, 282, 272, and 261 s nm (ϵ 5000, 9000, 9000, 7000); δ (CCl₄) 0.53 (s, 3, CH₃-C₁₃), 3.50 (m, 1, H-C₁), 4.9 (m, 1, H-C₃), 5.78 and 5.84 (AB_q, J = 10 Hz, H-C₆ and H-C₇).

1α-Hydroxy-4,4-dimethylcholesta-5,7-dien-3-one (17). A solution of 100 mg of 16a in 1 mL of dimethyl sulfoxide and 0.5 mL of dry benzene was treated with 0.05 mL of pyridine, 0.05 mL of trifluoroacetic acid, and J mL of diethylcarbodiimide. After 2 h the product was isolated from ether and chromatographed on thin layer plates coated with silica gel, with ether-hexane (1:1) to give 50 mg of 17: mp 185-186 °C (hexane); (α)_D -66° (dioxane, c 1); λ_{max} (ether) 293 s, 282, 272, 261 s nm (ϵ 5500, 9600, 9600, 7400); δ (CCl₄) 0.55 (s, 3, CH₃-C₁₃), 3.90 (m, 1, H-C₁), 5.42 (m, 1, H-C₇), 5.74 (d, J = 5.5 Hz, H-C₆).

Reduction of 1α -Hydroxy-4,4-dimethylcholesta-5,7-dien-3-one (17). A solution of 100 mg of 17 in ether was added to a mixture of 50 mg of lithium aluminum hydride in ether and stirred for 30 min at room temperature; the material was isolated from ether and chromatographed on silica gel coated thin layer plates with ether to give 30 mg of 15a and 30 mg of 16a, identical with the samples described above

 $1\alpha.2\alpha$ -Epoxy-4.4-dimethylcholesta-5.7-dien-3 α -ol and Its Reduction to 16a. A solution of 200 mg of 14 in 15 mL of dry ether was added dropwise to a slurry of lithium aluminum hydride in 10 mL of ether at 0 °C. After the solution was stirred for 30 min at this temperature, a saturated sodium sulfate solution was added and the isolated material was separated on silica gel plates to give 75 mg of the title compound: mp 168-169 °C; λ_{max} (ether) 293 s, 282, 272, and 261 s (ε 6000, 11 000, 11 000, 8000); δ (CCl₄) 0.55 (s, 3, CH₃-C₁₃), 0.77 $(s, 3, CH_3-C_{19}), 2.98 (s, 1, H-C_1), 3.40, 3.48 (AB_q, J = 2 Hz, H-C_1)$ and H-C₂), 5.41 (m, 1, H-C₇), 5.62 (d, J = 5.2 Hz, H-C₆).

The solution of 75 mg of epoxy alcohol in 10 mL of ether was added to a slurry of lithium aluminum hydride in 5 mL of ether. The product was isolated as above to give 55 mg of 4,4-dimethylcholesta-5,7diene- 1α , 3α -diol (**16a**), mp 180-181 °C, identical with the material obtained above.

4,4-Dimethyl-1 α -hydroxyvitamin D₃ (5). A solution of 100 mg of 15a in 300 mL of ether was irradiated for 30 min with 300-nm light which was filtered with 0.4% sodium nitrate solution, at 0 °C and under nitrogen atmosphere. The solvent was then evaporated under vacuum at 0 °C, the residue dissolved in 50 mL of isooctane, and the solution heated at 80 °C for 4 h under nitrogen atmosphere. The solvent was evaporated and the residue was chromatographed on a silica gel column. Elution with ether gave 30 mg of 5: mp 149-150 °C (acetone); $(\alpha)_D + 8^\circ$ (ether, $c \ 0.5$); λ_{max} (ether) 257 nm ($\epsilon \ 11 \ 500$); NMR, see Table II.

Anal. (C29H48O2). Found: m/e 428.3605.

4.4-Dimethyl-1α-hydroxy-3-epivitamin D₃ (6), 16a (100 mg) was irradiated as described above to give 30 mg of 6: mp 116-118 °C (acetone); (α)_D +19° (ether); λ_{max} (ether) 257 nm (ϵ 11 300); NMR, see Table II.

Anal. (C₂₉H₄₈O₂). Found: m/e 428.3601.

3-Keto Analogue of 4,4-Dimethyl-1 α -hydroxyvitamin D₃ (8). The ketol 17 (50 mg) was irradiated as described above to give 10 mg of the ketone 8: λ_{max} (ether) 320 s, 310 s, 290 s, 284, and 253 nm (ϵ 1200, 2700, 4000, 12 000, and 10 800); δ (CCl₄) 0.49 (s, 3, CH₃-C₁₃), 4.25 $(d, d, J = 6.3 \text{ and } 7.1 \text{ Hz}, \text{H-C}_3) 4.96 \text{ and } 5.45 \text{ (m, 2, H-C}_{19}), 5.86,$ 6.28 (AB_q, J = 11.5 Hz, H-C₆ and H-C₇).

References and Notes

(1) G. M. Sanders, J. Pot, and E. Havinga, Fortschr. Chem. Org. Naturst., 27, 131 (1969); E. Havinga, Experientia, 29, 1181 (1973).

(2) G. N. La Mar and D. L. Budd, J. Am. Chem. Soc., 96, 7317 (1974).

- (3) R. M. Wing, W. H. Okamura, M. R. Pirio, S. M. Sine, and A. W. Norman, Sclence, 186, 939 (1974); R. M. Wing, W. H. Okamura, A. Rego, M. R. Pirio, and A. W. Norman, J. Am. Chem. Soc., 97, 4980 (1975); W. H. Okamura, .. Hammond, A. Rego, A. W. Norman, and R. M. Wing, J. Org. Chem., 42, 2284 (1977)
- (4) K. Rsukida, K. Akutsu, and K. Saiki, J. Nutr. Sci. Vitaminol., 21, 411 (1975).
- E. Berman, Z. Luz, Y. Mazur, and M. Sheves, J. Org. Chem., 42, 3325 (5) (1977).
- M. Sheves, E. Berman, D. Freeman and Y. Mazur, J. Chem. Soc., Chem. (6) Commun., 643 (1975); W. H. Okamura and M. R. Pirio, Tetrahedron Lett., 4317 (1975).
- (7) M. Sheves, N. Friedman, and Y. Mazur, J. Org. Chem., 42, 3597 (1977).

- (8) W. H. Okamura, A. W. Norman, and R. M. Wing, Proc. Natl. Acad. Sci. U.S.A., 71, 4194 (1974); W. H. Okamura, M. N. Mitra, D. A. Procsal, and A. W. Norman, *Biochem, Blophys, Res. Commun.*, **65**, 24 (1975). (a) Ohki, *Chem. Pharm. Bull.*, **8**, 46 (1960); (b) G. Cooley, B. Ellis, and V.
- etrow, J. Chem. Soc., 2998 (1955).
- (10) W. H. Okamura, M. L. Hammond, H. J. C. Jacobs, and J.-V. Thuijl, Tetrahedron Lett., 4807 (1976). (11) K. E. Pfitzner and J. G. Moffat, J. Am. Chem. Soc., **85**, 3027 (1963). Dicy-
- clohexylcarbodiimide was replaced by diethylcarbodiimide (private communication by N. M. Weinshenker).
- (12) After this work was finished, a publication by J. Brynjolffsen, J. M. Midgley, and W. B. Whalley appeared in *J. Chem. Soc., Perkin Trans. 1*, 812 (1975), dealing with the synthesis of the two diols **15a** and **18a** by a related route.
- (13) E. Glotter, M. Weissenberg, and D. Lavie, Tetrahedron, 26, 3857 (1970)
- (14) Reduction of the epoxy ketone 14 with LIAIH₄ at 0 °C resulted in $1\alpha.2\alpha$ epoxy-4.4-dimethylcholesta-5,7-dien-3 α -ol which on treatment with the same reagent in bolling ether gave only the $1\alpha_s\alpha$ -diol **16a**. D. Kost, E. H. Carlson, and M. Raban, *Chem. Commun.*, 656 (1971).
- G. Binsch, Top. Stereochem., 3, 121 (1969). (16)
- (17) The assignment of the two signals to C_5 and C_{10} was reversed from our previous assignment (ref 5), on the basis of lanthanide-induced shifts experiment using Yb(fod)3 and is in agreement with that in ref 4 and comparable with the assignment of the respective signals in **4a**. (18) K. Torl, S. Seo, A. Shinaoka, and Y. Tomita, *Tetrahedron Lett.*, 4227 (1974);
- K. Tori, Y. Sakurawi, Y. Tomita, and H. Ishli, *ibid.*, 4163 (1976)
- (19) E. Breitmaier, K. Spohn, and S. Berger, Angew. Chem., Int. Ed. Engl., 14, 144 (1975).
- (20) J. B. Stothers, " ¹³C-NMR Spectroscopy", Academic Press, New York, N.Y., 1972, p 420.
- (21) The upper limiting value of ΔG^{\ddagger} for vitamin D₃ (1a) is estimated from the data given for dimethylvitamin D₃ (4a) (where $\Delta\delta(C_3) = 1$ ppm, $E_a \simeq 11.0$ kcal/mol, $T_c \simeq 190$ K) and the fact that at ca. 170 K no spectral changes are observed for the C₃ signal of **1a** $(\Delta\delta(C_3) = 4.62 \text{ ppm}, \text{ see ref 5})$. The ratio between the C₃ chemical shift differences $(\Delta\delta)$ for the two compounds, as a first approximation, equals the ratio of the Boltzmann factors of the rate constants.
- M. Bernard, L. Canuel, and M. St. Jacques, J. Am. Chem. Soc., 96, 2929 (22)(1974), and references cited therein. S. H. Grover and J. B. Stothers, *Can. J. Chem.*, **53**, 589 (1975).
- (23)
- (24) G. E. Maciel, "Topics in 13C-NMR Spectroscopy", Vol. 1, G. C. Levy, Ed., Wiley, New York, N.Y., 1974, p 64.
- (25) F. A. L. Anet, J. Am. Chem. Soc., 84, 1053 (1962)
- (26) It is possible to calculate the population ratio of 4a at room temperature using the observed limiting coupling constants, as evaluated from its low-temperature spectrum. The relation used is ${}^{3}J_{obsd} = {}^{3}J_{a:a} \times P + {}^{3}J_{e:e} \times (1 - P)$, where P is the fractional population of the equatorial conformer.² The calculated population ratio using this method is 42:58 (eq-OH/ax-OH), which differs slightly from the result obtained using the limiting coupling constants derived from cyclohexanol¹⁹ (55:45). The experimental error in the former case is ca. 17% while in the second case it is estimated to be 10%. This discrepancy between the two calculated population ratio points out the possible drawback in using model systems. Nevertheless, the deviations are small enough to exclude the possibility of puckered chair conformation.
- (27) Half-chair or boat conformations of ring A in 7 or 8 are not expected to show such UV interactions. Cf. H. Labhart and G. Wagnlere, Helv. Chim. Acta, 42, 2219 (1959); M. Gorodetsky, A. Yogev, and Y. Mazur, J. Am.
- Chem. Soc., 88, 699 (1966).
 (28) The smaller SCS values for C₈ and C₁₉ in 4a, as compared with 18 and 19, are presumably due to the fact that the former are sp²-hybridized carbon atoms. The greater deshielding effect of C4 and C6 in 4a is due to an additional steric interaction between the methine proton at C6 and the methyl groups at C₄. Smaller SCS deviations are observed for C₁ (ca. 0.6 ppm), C2 (ca. 0.7 ppm), and C5 (ca. 0.7 ppm) in 4a.
- D. W. Vidrine and P. E. Peterson, Anal. Chem., 48, 1301 (1976). This is consistent with previous results of La Mar² and Okamura³ from ¹H (30)NMR conformational analysis at room temperature.